
 1

The D0 framework and SAM on a Linux cluster.

Gabriele Garzoglio

July 2, 2001

Abstract:

SAM (Sequential Access through Meta-data) is the data access and job management system for

the D0 high energy physics experiment at Fermilab. The D0 physicists perform data analysis by the

use of a software framework integrated with SAM. SAM dispatches and controls user jobs through

interfaces to underlying Batch Systems. In this white paper we discuss three issues of interest that

enhance SAM functionalities, especially when running on a cluster of computers: the ability of

running jobs in subsequent phases “piping” the output of a job as the input of the next; the

integration of SAM with Root; the staging of the output files produced by the jobs on a cluster to a

common location for debugging purposes.

Table of contents:
Introduction .. 1

Phases in the job processing .. 2

The integration of SAM and Root ... 3

Retrieving and locking in the SAM cache all the files needed for a Root analysis. 4

The development of a specialized Root chain class (TChain) for SAM in the D0framework. ... 4

The integration of SAM from within Root. ... 4

Management of the output from the jobs for debugging purposes without using SAM 5

Schedule ... 5

Acknowledgement ... 6

Introduction

SAMI offers already the possibility of

running jobs on a cluster of computers. By

talking to the users and the developers of

SAM, I have found out that there are still a

few issues of interest that are not addressed

by the current implementation. The issues I

will discuss in this white paper are all within

the area of Knowledge and Distributed

IntelligenceII and focus on the use of SAM

running jobs on a cluster of computers.

Together with discussing the issues, I will

propose possible designs to include these

features in SAM.

I hope this white paper will be useful to set

priorities on the issues discussed and lead to

the implementation of some of the features

described here.

As a note, a Linux cluster of 2 machines is

available to test the developments of SAM

discussed here. The cluster uses PBSIII as

batch system; yet, SAM does not implement

an adapter to PBS. In order to use the cluster

for development, the implementation of such

an adapter should be done first.

 2

Phases in the job processing

The current implementation of SAM allows

the user to process only a single dataset at the

time using either a d0frameworkIV analysis or

a shell script. In case the output produced by

such a job needs to be processed further, the

human intervention is still needed to organize

the input to the new job and to submit it. This

procedure is not efficient, because the output

of the first job may be available at a time

when the user cannot submit the new job. It is

also error prone, because the single user must

do the organization of the new input each

time “by hand”. This leads to tempting but

wrong methods of treating the files, such as

using the files directly from the SAM cache

without notifying SAM to lock them.

It is for these reasons that a general method

of treating multiple phases in a job

submission is desirable. A new command of

the family “sam submit” can be implemented;

it could accept a user job plan and an input

dataset and treat the piping from one job to

the next automatically.

In order to implement a robust system, we

believe that the files produced at each

intermediate step should be stored in SAM.

As a supporting example, let us consider an

analysis made of several steps that accepts in

input several files and produces in output a

single histogram. If the files are processed in

parallel in a computer cluster and one of the

nodes crashes, the information on the

histogram will be partial. Yet, it may still be

of interest and discarding the whole job may

be a too drastic action. To be of any use in the

general case, though, the user should be able

to know global information about the dataset

processed, like luminosity, in order to

normalize the histogram. By looking at the

composition of the intermediate datasets, the

user could retrieve this kind information.

A drawback to this approach is that at every

step a reliable network between the computer

cluster, the SAM station, and the central

database is needed to use the storage

mechanism of SAM. In principle, since all the

information for the various phases is

processed within the cluster, such a reliable

connection is not needed continuously for

processing the whole chain. Glitches in the

network could be responsible for holding jobs

that otherwise would start immediately,

without having to wait for the output of the

previous jobs to be stored and then

redelivered to them via SAM. In order to

avoid issues like these, implementing a

mechanism for transferring the intermediate

information at a deferred time would be

desirable.

Considering now the case where every file

produced by the jobs is stored in SAM, in

order to implement the mechanism of piping,

the output files have to be grouped in datasets

at each step. The choice of the dataset name is

important to let the user keep track of what

files have been produced at each phase of the

process. First of all, a new data tier is needed

to identify this kind of intermediate files.

Then the dataset name should contain the list

of processing script (name and version) up to

that point. We believe that considering only

the name of the script that produced the files

is not enough to characterize the dataset. For

example, considering an analysis where

events are processed by different programs in

subsequent phases, the final result may

depend on the order in which the programs

are applied. This is the case, for example,

where the programs transform the variables

non-linearly.

In the following section we describe the

design of a possible implementation of the

concept of job phases in SAM. We think of a

scenario where the user submits a script to

SAM; the script gets executed possibly on

multiple nodes by the batch system that

manages the Linux cluster; the Project Master

is responsible for providing the input files to

the jobs.

 3

The user has to provide the list of scripts

he/she wants to use and the initial dataset, via

the modified SAM submit command. Also,

each script has to store the output files in

SAM. The new command will manage the

piping, giving appropriate dataset names to

the intermediate output files.

Two things must be added to the current

implementation of SAM to enable the feature

of processing phases:

1. the automatic definition of dataset from

the output files at the end of each job

2. the scheduling of chained jobs to the

batch system

In order to accomplish point 1, the user will

have to store the files produced setting a

dedicated meta-data dimension to the value of

the project name that generated it. The project

name is generated by the Station Master and

it is unique. It is available to the user via the

environment variable PROJECT_NAME.

When all the jobs are terminated and right

before stopping the Project Master (see

samscript.sh in the cvs package sam_user), a

job-terminating script will be run. This script

will define a dataset using the project name as

the dimension to group the output files just

produced.

In order to accomplish point 2 (see Figure

1) one can act at the time of submission to the

batch system (see station_client.py in the cvs

package sam_user). Currently, SAM submit

is responsible to start the Project Master, ask

the Station Master how to submit a job to the

specific underlying batch system, submit the

samscript.sh wrapper for the user script and

check the status of submission via the Station

Master.

The modified version could submit all the

jobs at the same time, making sure that the

batch system properly set their dependencies,

i.e. each job must be hold until the job from

the previous phase has finished1. Note that

this is a new concept for the abstract interface

1 All major batch systems provide this feature.

to the batch systems and must be designed

carefully.

Every job is submitted as a sam submit for

a single script2. This has to be done to

instantiate a new Project Master for every

new dataset3. The intermediate dataset names

can be defined here and stored in a temporary

table to the database. The job-terminating

script of point 1 can access this same table

when defining the new datasets.

Figure 1: The proposed way of submitting jobs to

be executed in subsequent phases. The new SAM

submit command submits them all at the same time

and set job dependencies via the batch system. In

red the parts that still need to be implemented; in

black what is present already.

The integration of SAM and Root

RootV is going to be one of the platforms

that the D0 experiment will use for data

analysis. Also, the Root format is one of the

two chosen to store the D0 thumbnails.

Integrating SAM with Root is a project of

interest by itself. Furthermore, considering

the interest of the community in the

development of the parallel version of Root,

Proof, the SAM/Root integration could be the

first step towards a general approach to data

analysis in an environment where both data

and jobs are fully distributed.

We propose three possible levels of

integration. In the following paragraphs we

2 Since the Project Master for the first job is

instantiated already, the first job can be submitted

directly to the batch system.
3 Currently, there is no method to “reload” a list of

files to an already instantiated Project Master.

 4

will describe each of them, from most loose

integration level but the fastest in terms of

delivery, to the most complete but slowest

(see paragraph “Schedule”). Note that in the

latter, some issues about the maintenance of

the software may raise, since Fermilab has no

control over the development of Root.

Retrieving and locking in the SAM cache

all the files needed for a Root analysis.

A popular way of using Root for analysis is

making a Root-chain of the data files of

interest. This technique allows a transparent

random access to each event; generally,

though, the access is performed by the use of

an iterator, sequentially.

The most direct way of allowing users to

chain Root files is having all of them present

at the same time on disk. In our case, SAM

could be used to retrieve the files to SAM

caches before starting the Root analysis. The

files should be then locked to prevent SAM

from replacing them. At this point, the Root

analysis could run on a chain of these files.

When finished, the locks on the files should

be released.

This strategy would be straightforward to

implement in the case of a single user locking

the files. Currently, there is no mechanism to

manage concurrent locks in a multi-user

environment. A crude, but easy way of

implementing such a mechanism is using a

counter instead of a flag to lock the files. This

counter is the number of concurrent locks and

is incremented/decremented by each process

that needs the file. Only when the counter is 0

the file is available for replacement.

Note that some form of resource reservation

should be implemented, as well. Without it,

SAM could incur in dead locks: since all the

files need to be present before starting the

analysis, each new delivered file should be

locked; therefore, two applications may never

terminate waiting for the delivery of the files

in a cache not large enough to keep them all

and where all the files present are locked.

The development of a specialized Root

chain class (TChainVI) for SAM in the

D0framework.

The approach described above requires the

allocation of a large amount of disk before

starting any analysis. This is resource and

time consuming. The approach proposed here

allows the system to analyze the files while

they are delivered to the cache, making this

mechanism transparent to the user.

The D0framework is completely integrated

with SAM; also, it should be possible to use

Root classes from the framework, even if

there is not much experience on how to do it,

yet. We propose to develop a new framework

class, TSAMChain, as a specialization of the

Root class TChain4. This child class will

overload the methods Add and LoadTree

using the SAM commands that are already

available and visible from the d0framework.

Since the chain would be managed by

TSAMChain, it would be possible to start a

Root analysis on the files already present on

cache, while transferring the missing ones,

and to release the files that have been

processed already, avoiding problems of dead

locks.

Note that after gaining some experience, it

should be already possible to run those

analyses that do not rely on chains to process

Root files from the d0framework.

TSAMChain would make the file transfers

more transparent and closer in style to Root.

The integration of SAM from within

Root.

In the previous paragraph we have

discussed the possibility of using Root from

within the d0framework. All the SAM

commands are available to the framework

because of a C++ interface to SAM. In this

paragraph we discuss the possibility of

making available from within Root the SAM

commands.

4 This is the Root class that implements the methods

to chain files together

 5

In order to do this we propose to use the

same C++ interface that is used by the

d0framework. Some work is necessary to

decouple the interface from the framework

and to make a stand-alone shared library of it.

Once this is done, we could generate a Root

dictionary for the entry points of interest to

the library: this would allow the use of SAM

functionalities from the Root command line

interface. Then we could start implementing

functions that utilize SAM, like TSAMChain,

from within Root. Note that if we plan to use

the SAM interface from within functions

only, we do not need to generate the Root

dictionary.

Management of the output from

the jobs for debugging purposes

without using SAM

There are certain running conditions, like

during debugging for examples, where the

typical file size is small and where the user is

interested in taking a look to the output

without storing it. Typically, the user runs

several cycles of debugging, producing many

of these output files, the long-term utility of

which is null. The ideal situation would be

having all the files at a certain disk location at

the end of the job, so that the user could

analyze and discard them. We propose to

modify SAM to enable the staging of these

small size files to a common disk area,

without storing them permanently.

Currently, when running on a cluster, the

output files of each job are either stored on

the local disk of the node where the job runs

or stored via SAM. In our case, using SAM to

store and retrieve the files is not an option

because if the files are used once i.e. retrieved

from storage, they cannot be deleted from the

system anymore. Note that all the batch

systems we consider to use allow the option

of transferring output files when the file name

is known at submission time. This is not in

general the case, especially when running a

d0framework analysis, where the I/O is

managed at runtime by the framework using

SAM.

In order to accomplish this task, we propose

1. to store the name and location of the

files produced;

2. running a remote rcp to retrieve the

files, at the end of the job.

In order to achieve 1 (see Figure 2), we

propose to implement 2 new SAM

commands, “sam remember name” and “sam

remind names”. The user or the d0framework

should call the first command after closing

each output file. This command would simply

store name and location of the files to a

temporary table in the database using as a key

the project name that produced it; the Project

Master could do it in the user’s behalf.

The second command could be called by an

output_script right before stopping the Project

Master5 (see samscript.sh in the cvs package

sam_user). At this point the temporary table

that holds the file name could be discarded.

Figure 2: the proposed way of copying the output

files produced by a series of jobs running on a

cluster. samscript.sh is the wrapper for the user

script submitted by SAM to the batch system. In

red the commands to be implemented; in black

what it is available already.

Schedule

The following is an estimate of the amount

of time needed to implement each of the

issues discussed above. Since not all of the

5 The strategy is the same as for automatically

defining a dataset of the output files (see paragraph

“Phases in the job processing”), the script is different

in this case.

 6

details have been completely considered yet,

this time is a tentative indication only. All of

the following refer to implementation and

testing.

 Setting up a SAM station running on a

Linux cluster: a few days

 The adapter between SAM and PBS: 1

month

 Phases in the job processing: 1 month

 Retrieving and locking in the SAM

cache all the files needed for a Root

analysis: 2 weeks

 The development of a specialized Root

chain class (TChain) for SAM in the

D0framework: 5 weeks

 The integration of SAM from within

Root: from 1 to 2 months

 Management of the output from the

jobs for debugging purposes without

using SAM: 3 weeks

Acknowledgement

This white paper is the result of many

discussions: I want to thank Igor Terekhov

and Sinisa Veseli for helping me speeding up

my learning curve on sam and for the

technical hints on the aspect of design

described here; Philippe Canal for the help

with Root; Lee Lueking for the time spent

with me discussing software requirements;

Vicky White and Ruth Pordes for the interest

shown in this project.

References
I The SAM team, L.Lueking (co-leader),

V.White (co-leader), L.Loebel-Carpenter,

C.Moore, H.Schellman, I.Terekhov,

J.Trumbo, S.Veseli, M.Vranicar. The home

page http://d0db.fnal.gov/sam
II Knowledge and Distributed intelligence at

Fermilab (KDI). The home page:
http://projetcs.fnal.gov/act/kdi.html

III The Portable Batch System. The home

page http://www.openpbs.org

IV The D0 Framework, talk given by

J.Kowalkowski at The International

Conference on Computing in High Energy

and Nuclear Physics (CHEP2000), Sptember

2001
V Root, an Object-Oriented Data Analysis

Framework; home page
http://root.cern.ch

VI The Root Users Guide, v3.1b, Chapter 12

“Trees”, par “Chains”

